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v

algorithm P /* P semaphore operation */ °

input: (1) semaphore
(2) priority

output: 0 for normal return
—1 for abnormal wakeup due to signals catching in kernel
long jumps for signals not catching in kernel

Pprim (semaphore.lock);
decrement (semaphore.value);
if (semaphore.value >=0)
{
Vprim(semaphore.lock);
return(0);
}
/* must go to sleep */
if (checking signals)
{
if (there is a signal that interrupts sleep)
{
increment (semaphore.value);
if (catching signal in kernel)

(
Vprim(semaphore.lock);
return(—1);

}

else

(

Vprim (semaphore.lock);
longjmp;

}
)
enqueue process at end of sleep list of semaphore;
Vprim (semaphore.lock);
do context switch;
check signals, as above;
return(0);

Figure 12.8. Algorithm for Implementation of P

to test the semaphore and find its value equal to 0 and for process B on processor B
to do a P, decrementing the value of the semaphore to —1 (Figure 12.10) just after
the test on A. Process A would continue executing, assuming that it had awakened
every sleeping process on the semaphore. Hence, the loop does not insure that
every sleeping process wakes up, because it is not atomic.
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algorithm V /* V semaphore operation */
input: address of semaphore
output: none

Pprim (semaphore.lock);
increment (semaphore.value);

if (semaphore.value <= 0)

remove first process from semaphore sleep list;
make it ready to run (wake it up);

Vprim(semaphore.lock);

Figure 12.9. Algorithm for Implementation of V

Consider another phenomenon in the use of semaphores on a uniprocessor
system. Suppose two processes, A and B, contend for a semaphore: Process A
finds the semaphore free and process B sleeps; the value of the semaphore is —1.
When process A releases the semaphore with a V, it wakes up process B and
increments the semaphore value to 0. Now suppose process A, still executing in
kernel mode, tries to lock the semaphore again: It will sleep in the P function,
because the value of the semaphore is 0, even though the resource is still free! The
system will incur the expense of an extra context switch. On the other hanad, if the
lock were implemented by a sleep-lock, process A would gain immediate reuse of
the resource, because no other process could lock it in the meantime. In this case,
the sleep-lock would be more efficient than a semaphore.

When locking several semaphores, the locking order must be consistent to avoid
deadlock. For instance, consider two semaphores, A and B, and consider two kernel
algorithms that must have both semaphores simultaneously locked. If the two
algorithms were to lock the semaphores in reverse order, a deadlock could arise, as
shown in Figure 12.11; process A on processor A locks semaphore SA while process
B on processor B locks semaphore SB. Process A attempts to lock semaphore SB,
but the P operation causes process A to go to sleep, since the value of SB is at most
0. Similarly, process B attempts to lock semaphore SA, but its P puts process B to
sleep. Neither process can proceed.

Deadlocks can be avoided by implementing deadlock detection algorithms that
determine if a deadlock exists and, if so, break the deadlock condition. However,
implementation of deadlock detection algorithms would complicate the kernel code.
Since there are only a finite number of places in the kernel where a process must
simultaneously lock several semaphores, it is easier to implement the kernel
algorithms to avoid deadlock conditions before they occur. For instance, if
particular sets of semaphores were always locked in the same order, the deadlock
condition could never arise. But if it is impossible to avoid locking semaphores in
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Process A/Processor A Process B/Processor B

P(semaphore SA);

P(semapl:}ore SB);

if (! CP(sem:aphore SA))
{
V (semaphore SB);
reenter algorithm

P(semaf)hore SB);.

v sleeps
Time

Figure 12.12. Use of Conditional P to Avoid Deadlock

hash queue, because a process would never go to sleep and leave the hash queue in
an inconsistent state. In a multiprocessor system, however, two processes could
manipulate the linked list of the hash queue; the semaphore for the hash queue
permits only one process at a time to manipulate the linked list. Similarly, the free
list requires a semaphore because several processes could otherwise corrupt it.

Figure 12.14 depicts the first part of the getblk algorithm as implemented with
semaphores on a multiprocessor system (recall Figure 3.4). To search the buffer
cache for a given block, the kernel locks the hash queue semaphore with a P
operation. If another process had already done a P operation on the semaphore, the
executing process sleeps until the original process does a V. When it gains
exclusive control of th€ hash queue, it searches for the appropriate buffer. Assume
that the buffer is on the hash queue. The kernel (process A) attempts to lock the
buffer, but if it were to use a P operation and if the buffer was already locked, it
would sleep with the hash queue locked, preventing other processes from accessing
the hash queue, even though they were searching for other buffers. Instead, process
A attempts to lock the buffer using the CP operation; if the CP succeeds, it can use
the buffer. Process A locks the free list semaphore using CP in a spin loop, because
the expected time the lock is held is short, and hence, it does not pay to sleep with
a P operation. The kernel then removes the buffer from the free list, unlocks the
free list, unlocks the hash queue, and returns the locked buffer.
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P(semaphore);
(Semaphore value now 0)

Interrupt

CP(semaphore) fails---
semaphore locked.

Semaphore not unlocked until return from interrupt.

Cannot return from interrupt, without servicing it.

Deadlocked

Time

Figure 12.13. Deadlock in Interrupt Handler

Suppose the CP operation on the buffer fails because another process had locked
the buffer semaphore. Process A releases the hash queue semaphore and then
sleeps on the buffer semaphore with a P operation. The P operates on the
semaphore that just caused the CP to fail! It does not matter whether process A
sleeps on the semaphore: After completion of the P operation, process A controls
the buffer. Because the rest of the algorithm assumes that the buffer and the hash
queue are locked, process A now attempts to lock the hash queue.! Because the
locking order here (buffer semaphore, then hash queue semaphore) is the opposite
of the locking order explained above (hash queue semaphore, then buffer
semaphore), the CP semaphore operation is used. The obvious processing happens
if the lock fails. But if the lock succeeds, the kernel cannot be sure that it has the
correct buffer, because another process may have found the buffer on the free list
and changed the contents to those of another block before relinquishing control of
the buffer semaphore. Process A, waiting for the semaphore to become free, had no
idea that the buffer it was waiting for was no longer the one in which it was
interested and must therefore check that the buffer is still valid; if not, it restarts
the algorithm. If the buffer contains valid data, process A completes the algorithm.

1. .The algorithm could avoid locking the hash queue here by setting a flag and testing it before the V
“Mater on, but this method illustrates the technique for locking semaphores in reversed order.
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algorithm getblk /* multiprocessor version */
input: file system number
block number
output: locked buffer that can now be used for block
{
while (buffer not found)
{
P(hash queue semaphore);
if (block in hash queue)
{
if (CP(buffer semaphore) fails) /* buffer busy */
{
V(hash queue semaphore);
P(buffer semaphore); /* sleep until free */
if (CP(hash queue semaphore) fails)

(
V(buffer semaphore);

continue; /* to while loop */
)
else if (dev or block num changed)
{
V(buffer semaphore);
V(hash queue semaphore);
}

}
while (CP(free list semaphore) fails)
; /* spin loop */

mark buffer busy;

remove buffer from free list;

V(free list semaphore);

V(hash queue semaphore);

return buffer;
}
clse /* buffer not in hash queue */
/* remainder of algorithm continues here */

Figure 12.14. Buffer Allocation with Semaphores

407
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multiprocessor algorithm wait
{
for (;;) /* loop */
{
search all child processes:
if (status of child is zombie) -
return;
P(zombie_semaphore); /* initialized to 0 */

)

Figure 12.15. Multiprocessor Algorithm for Wait/Exit

The remainder of the algorithm is left as an exercise.

12.3.3.2 Wait

Recall from Chapter 7 that a process sleeps in the wait system call until a child
exits. The problem on a multiprocessor system is to make sure that a parent does
not miss a zombie child as it executes the wait algorithm; for example, if a child
exits on one processor as the parent executes wait on another processor, the parent
must not sleep waiting for a second child to exit. Each process table entry contains
a semaphore zombie_semaphore, initialized to 0, where a process sleeps in wait
until a child exits (Figure 12.15). When a process exits, it does a V on the parent
semaphore, awakening the parent if it was sleeping in wait. If the child process
exits before the parent executes wait, the parent finds the child in the zombie state
and returns. If the two processes execute exit and wait simultaneously but the
child exits after the parent already checked its status, the child V will prevent the
parent from sleeping. At worst, the parent will make an extra iteration through the
loop.

12.3.3.3 Drivers

The multiprocessor implementation for the AT&T 3B20A computer avoided
inserting semaphores into driver code by doing P and V operations at the driver
entry points (see [Bach 84]). Recall from Chapter 10 that the interface to device
drivers is well defined with only a few entry points (about 20, in practice). Drivers
are protected by bracketing the entry points, as in:

P(driver_semaphore);
open(driver);
V(driver_semaphore):
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By using the same semaphore for all entry points to a driver and using different
semaphores for each driver, at most one process can execute critical code in the
driver at a time. The semaphores can be configured per device unit or for classes of
devices. For example, a semaphore may be associated with each physical terminal,
or one semaphore may be associated with all terminals. The former case is
potentially faster, because processes accessing one terminal do not lock the
semaphore for other terminals, as in the latter case. However, some device drivers
interact internally with other device drivers; in such cases, specifying one
semaphore for a class of devices is easier to understand. Alternatively, the 3B20A
implementation allows particular devices to be configured such that the driver code
runs on specified processors.

Problems could occur when a device interrupts the system when its semaphore is
locked: the interrupt handler cannot be invoked, because otherwise there would be
danger of corruption. On the other hand, the kernel must make sure that it does
not lose an interrupt. The 3B20A queues interrupts until the semaphore is
unlocked and it is safe to execute the interrupt handler, and it calls the interrupt
handler from the code that unlocks drivers, if necessary.

12.3.3.4 Dummy Processes

When the kernel does a context switch on a uniprocessor, it executes in the context
of the process relinquishing control, as explained in Chapter 6. If no processes are
ready to run, the kernel idles in the context of the process that last ran. When
interrupted by the clock or by other peripherals, it handles the interrupt in the
context of the process’it had been idling in.

In a multiprocessor system, the kernel cannot idle in the context of the process
executed most recently on the processor. For if a process goes to sleep on processor
A, consider what happens when the process wakes up: It is ready to run, but it
does not execute immediately even though its context is already available on
processor A. If processor B now chooses the process for execution, it would do a
context switch and resume execution. When processor A emerges from its idle loop
as the result of another interrupt, it executes in the context of process A again until
it switches context. Thus, for a short period of time, the two processors could be
writing the identical address space, particularly, the kernel stack.

The solution to this problem is to create a dummy process per processor; when a
processor has no work to do, the kernel does a context switch to the dummy process
and the processor idles in the context of its dummy process. The dummy process
consists of a kernel stack only; it cannot be scheduled. Since only one processor
can idle in its dummy process, processors cannot corrupt each other.
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12.4 THE TUNIS SYSTEM

The Tunis system has a user interface that is compatible to that of the UNIX
system, but its nucleus, written in the language Concurrent Euclid, consists of
kernel processes that control each part of the system. The Tunis system solves the
mutual exclusion problem because only one instance of a kernel process can run at
a time, and because kernel processes do not manipulate the data structures of other
processes. Kernel processes are activated by queuing messages for input, and
Concurrent Euclid implements monitors to prevent corruption of the queues. A
monitor is a procedure that enforces mutual exclusion by allowing only one process
at a time to execute the body of the procedure. They differ from semaphores
because they force modularity (the P and V are at the entry and exit points of the
monitor routine) and because the compiler generates the synchronization primitives.
Holt notes that such systems are easier to construct using a language that supports
the notion of concurrency and monitors (see page 190 of [Holt 831). However, the
internal structure of the Tunis system differs radically from traditional
- implementations of the UNIX system.

12.5 PERFORMANCE LIMITATIONS

This chapter has presented two methods that have been used to implement
multiprocessor UNIX systems: the master-slave configuration, where only one
processor can execute in kernel mode, and a semaphore method that allows all
processors to execute in kernel mode simultaneously. The implementations of
multiprocessor UNIX systems described in this chapter generalize to any number
of processors, but system throughput will not increase at a linear rate with the
number of processors. First, there is degradation because of increased memory
contention in the hardware, meaning that memory accesses takes longer. Second,
in the semaphore scheme, there is increased contention for semaphores; processes
find semaphores locked more frequently, more processes queue waiting for
semaphores to become free, and therefore processes have to wait a longer period of
time to gain access to the semaphore. Similarly. in the master-slave scheme, the
master processor becomes a system bottleneck as the number of processors in the
system grows, because it is the only processor that can execute kernel code.
Although careful hardware design can reduce contention and provide nearly linear
increase in system throughput with additional processors for some loads (see [Beck
85), for example), all multiprocessor systems built with current technology reach a
limit beyond which the addition of more processors does not increase system
throughput.

12.6 EXERCISES

1. Implement a solution to the multiprocessor problem such that any processor in a
multiprocessor configuration can‘execute the kernel but only one processor can do so at
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a time. This differs from the first solution discussed in the text, where one processor is
designated the master to handle all kernel services. How could such a system make
sure that only one processor is in the kernel? What is a reasonable strategy for
handling interrupts and still make sure that only one processor is in the kernel?

Use the shared memory system calls to test the C code for implementation of
semaphores, shown in Figure 12.6. Several independent processes should execute P-V
sequences on a semaphore. How would you demonstrate a bug in the code?

Design an algorithm for CP (conditional P) along the lines of the algorithm for P.
Explain why the algorithms for P and V in Figure 12.8 and 12.9 must block interrupts.
At what points should they be blocked?

If a semaphore is used in a spin-lock, as in

while (! CP(semaphore));

why can the kernel never use an unconditional P operation on it? (Hint: If a process
sleeps on the P operation, what happens in the spin-lock?)

Refer to the algorithm getblk in Chapter 3 and describe a multiprocessor
implementation for the case that the block is not in the buffer cache.

In the buffer allocation algorithm, suppose there is too much contention for the buffer
free list semaphore. Implement a scheme to cut down the contention by partitioning
the free list into two free lists.

Suppose a terminal driver has a semaphore, initialized to 0, where processes sleep if
they flood the terminal with output. When the terminal can accept more data, it
wakes up every process sleeping on the semaphore. Design a scheme to wake up all
processes using P and V. Define other flags and driver locking semaphores, as
necessary. If the wakeup results from an interrupt and a processor cannot block
interrupts on other processors, how safe can the scheme be?

When protecting driver entry points with semaphores, provision must be made to
release the semaphore when a process sleeps in the driver. Describe an
implementation. Similarly, how should the driver handle interrupts that occur when
the driver semaphore is locked?

Recall the system calls in Chapter 8 for setting and accessing system time. A system
cannot assume identical clock rates for different multiprocessors. How should the time
system calls work?
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DISTRIBUTED UNIX
SYSTEMS

The previous chapter examined tightly coupled multiprocessor systems that share
common memory and kernel data structures and schedule processes from a common
pool. However, it is frequently desirable to pool computers to allow resource
sharing such that each computer retains autonomy over its environment. For
example, a user of a personal computer wants to access files that are stored on a
larger machine but wants to retain control of the personal computer. Although
several programs such as wucp allow file transfer and other applications across a
network, their use is not transparent because the user is aware of the network.
Furthermore, programs such as text editors do not work on remote files as they do
for local files. Users would like to do the normal set of UNIX system calls and,
except for a possible degradation in performance, not be aware that they cross a
machine boundary. Specifically, system calls such as open and read should work
for files on remote machines just as they do for files on local systems.

Figure 13.1 shows the architecture of a distributed system. Each computer,
shown in a circle, is an autonomous unit, consisting of a CPU, memory and
peripherals. A computer can fit the model even though it does not have local file
storage: It must have peripherals to communicate with other machines, but all its
regular files can be on another machine. Most critically, the physical memory
available to each machine is independent of activity on other machines. This
feature distinguishes “distributed systems from the tightly coupled multiprocessor
systems described in the last chapter. Consequently, the kernels on each machine

412
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Figure 13.1. Model of Distributed Architectures

are independent, subject to the external constraints of running in a distributed
environment.

Many implementations of distributed systems have been described in the
literature, falling into the following categories.

e Satellite systems are tightly clustered groups of machines that center on one
(usually larger) machine. The satellite processors share the process load with
the central processor and refer all system calls to it. The purpose of a satellite
svstem is to increase system throughput and, possibly, to allow dedicated use of
a processor for one process in a UNIX ‘system environment. The system runs as
a unit; unlike other models of distributed systems, satellites do not have real
autonomy except, sometimes, in process scheduling and in local memory
allocation.

® “Newcastle” distributed systems allow access to remote systems by recognizing
names of remote files in the C library. (The name comes from a paper entitled
“The Newcastle Connection” — see [Brownbridge 82).) The remote files are
designated by special characters embedded in the path name or by special path
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component sequences that precede the file system root. This method can be
implemented without making changes to the kernel and is therefore easier to
implement than the other implementations described in this chapter, but it is
less flexible.

e Fully transparent distributed systems allow standard path names to refer to files
on other machines; the kernel recognizes that they are remote. Path names
cross machine boundaries at mount points, much as they cross file system mount
points on disks.

This chapter examines the architecture of each model; the descriptions here are
not based on particular implementations but on information published in various
technical papers. They assume that low-level protocol modules and device drivers
take care of addressing, routing, flow control, and error detection and correction
and, thus, assume that each model is independent of the underlying network. The
system call examples given in the next section for the satellite processor systems
work in similar fashion for the Newcastle and transparent models presented in later
sections; hence, they will be explained in detail once, and the sections on the other
models will concentrate on particular features that most distinguish them.

13.1 SATELLITE PROCESSORS

Figure 13.2 shows the architecture for a satellite processor configuration. The
purpose of such a configuration is to improve system throughput by offloading
processes from the central processor and executing them on the satellite processors.
Each satellite processor has no local peripherals except for those it needs to
communicate with the central processor: The file system and all devices are on the
central processor. Without loss of generality, assume that all user processes run on
a satellite processor and that processes do not migrate between satellite processors;
once a process is assigned to a processor, it stays there until it exits. The satellite
processor contains a simplified operating system to handle local system calls,
interrupts, memory management, network protocols, and a driver for the device it
uses to communicate with the central processor.

When the system is initialized, the kernel on the central processor downloads a
local operating system into each satellite processor, which continues to run there
until the system is taken down. Each process on a satellite processor has an
associated stub process on the central processor (see [Birrell 84]); when a process
on a satellite processor makes a system call that requires services provided only by
the central processor, the satellite process communicates with its stub on the.central
processor to satisfy the request. The stub executes the system call and sends the
results back to the satellite processor. The satellite process and its stub enjoy a
client-server relationship similar to those described in Chapter 11: The satellite is
the client of the stub, which provides file system services. The term stub
emphasizes that the remote server process serves only one client process. Section
13.4 considers server processes that serve several client processes. For convenience,
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Figure 13.2. Satellite Processor Configuration

the term satellite process will refer to a process running on a satellite processor.

When a satellite process makes a system call that can be handled locally, the
kernel does not have to send a request to the stub process. For example, it can
execute the sbrk system call locally to obtain more memory for a process. But if it
needs to obtain service from the central processor, such as when opening a file, it
encodes the parameters of the system call and the process environment into a
.message that it sends to the stub process (Figure 13.3). The message consists of a
token that specifies the system call the stub should make on behalf of the client,
parameters to the system call, and environmental data such as user ID and group
ID, which may vary per system call. The remainder of the message contains
variable length data, such as a file path name or data for a write system call.

The stub waits for requests from the satellite process; when it receives a request,
it decodes the message, determines what system call it should invoke, executes the
system call, and encodes the results of the system call into a response for the
satellite process. The response contains the return values to be returned to the



416 DISTRIBUTED UNIX SYSTEMS

Message Format

Token Syscall  |Environment Path Name

for Parameters Data | =T [s)
Syscall Data Stream

Response
Syscall .
Error | Signal ‘
Return | < oo | Number | """ Data Stream «----.-..
Values

Figure 13.3. Message Formats

calling process as the result of the system call, an error code to report errors in the
stub, a signal number, and a variable length data array to contain data read from a
file, for example. The satellite process sleeps in the system call until it receives the
response, decodes it, and returns the results to the user. This is the general scheme
for handling system calls; the remainder of this section examines particular system
calls in greater detail.

To explain how the satellite system works, consider the following system calls:
getppid, open, write, fork, exit and signal. The getppid system call is simple,
because it requires a simple request and response between the satellite and central
processors. The kernel on the satellite processor forms a message with a token that
indicates that the system call was getppid, and sends the request to the central
processor. The stub on the central processor reads the message from the satellite
processor, decodes the system call type, executes the getppid system call, and finds
its parent process ID. It then forms a response and writes it to the satellite process,
which had been waiting, reading the communication link. When the satellite
receives the answer from the stub, it returns the result to the process that had
originally invoked the getppid system call. Alternatively, if the satellite process
retains data such as the parent process ID locally, it need not communicate with its
stub at all.

For the open system call, the satellite process sends an open message to the stub
process, including the file name and other parameters. Assuming the stub does the
open call successfully, it allocates an inode and file table entry on the central
processor, assigns an entry in the user file descriptor table in its u area, and returns
the file descriptor to the satellite process. Meanwhile, the satellite process had been
reading the communications link, waiting for the response from the stub process.
The satellite process has no kernel data structures that record information about
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